logo
9

大模型黑话指南(一)

今年GPT把AI带火了,每天都有新的进展、劲爆的消息,作为一个从未接触过AI开发的普通同学来说,看消息都看的费劲。所以想着把这些黑话都沉淀一下。虽然不全,甚至还有部分概念/信息理解不一定正确。不过在自学之余,捎带手整理出来,希望对和我一样的零经验选手来说有点帮助。

PT、SFT

在大模型领域,PT和SFT分别代表预训练(Pre-training)和监督微调(Supervised Fine-tuning)。这两个概念通常用于构建和优化深度学习模型,特别是自然语言处理(NLP)领域的模型。
  • 预训练(Pre-training,简称PT):预训练是一种无监督学习方法,模型通过大量无标签数据进行训练,以捕捉数据的底层结构和模式。在自然语言处理领域,预训练模型通常学习词汇、语法和句子结构等基本特征。预训练的目的是让模型学会一定程度的通用知识,为后续的微调阶段打下基础。
  • 监督微调(Supervised fine-tuning,简称SFT):微调是一种有监督学习方法,通过在有标签数据上对预训练模型进行进一步训练,以适应特定的任务。这个过程使得模型能够利用预训练阶段学到的通用知识,结合新数据的标签信息,使模型在特定任务上表现更好。

自监督学习

大型语言模型本质上就是神经网络,也就是一种机器学习的方法。机器学习中的监督学习需要人类帮助标注数据。然而遗憾的是,ChatGPT 底层的大型语言模型参数如此的多,如果使用监督学习,必然需要大量的人类标记数据,这几乎是不可能的。自监督学习主要是利用辅助任务(pretext)从大规模的无监督数据中挖掘自身的监督信息,通过这种构造的监督信息训练模型,从而学习到对下游任务有价值的表征。

自回归模型

GPT 是如何在人类的文本数据上实现自监督学习?用一句话就可以讲明白:用文本的前文来预测后文

Token

GPT 不是适用于某一门语言的大型语言模型,它适用于几乎所有流行的自然语言。所以 GPT 的 token 需要兼容几乎人类的所有自然语言,那意味着 GPT 有一个非常全的 token 词汇表,它能表达出所有人类的自然语言。如何实现这个目的呢?答案是通过 unicode 编码。实际上 GPT 是使用一种称为 BPE (Byte Pair Encoding)的算法,在上面的基础上进一步生成更大的词汇表。它的基本思想如下,将上述的基础 token (256种可能)做组合,然后统计文本数据中这些组合出现的频率,将频率最大的那些保留下来,形成新的 token 词汇表。因此,通过此方法得到的 token 和文字的映射不一定是一对一的关系。 GPT 实际是将我们输入的文字转换成 token,然后通过 GPT 模型预测 token,再将 token 转换成文字,最后再输出给我们。

上下文学习

对于大型语言模型来说,即需要大量的数据标记成本,也需要算力成本和时间成本。然而,不同场景下任务的需求是不一样的,不可能根据每个任务都去微调模型。能否不进行微调就让模型学习完成不同的任务呢?答案是可以的,这个神奇的技术称为 上下文学习 (In Context Learning)。它的实现非常简单,只需要给到模型一些引导,将一些事先设定的文本输入到大型语言模型中,就像手把手教人学会某项技能一样,大型语言模型就能神奇的学习到如何处理后续的新任务。遗憾的是,为什么大型语言模型具有上下文学习的能力仍然是一个迷,业内把这个能力称为“涌现”

思维链

“思维链”是指在思考问题或探索主题时,一个思想引发另一个思想,形成一系列相互关联的思维环节。这种思维过程可以是线性或非线性的,通过连接和扩展思想,帮助我们更全面地理解问题,促进创新性思考,思维链是认知过程中的重要组成部分。

Transformer

是一种基于自注意力机制的深度学习模型架构,用于处理序列数据,特别在自然语言处理领域取得重大突破。它由编码器和解码器组成,通过并行处理和全局关联建立,能够更好地捕捉长期依赖关系,实现高效的序列到序列转换。

LoRA

假设有一个预训练好的语言模型,包含了大量的预训练好的参数。现在要使用这个模型来解决一个特定的下游任务,例如情感分析。为了适应这个特定的任务,需要微调模型。
使用LoRA方法,首先将预训练模型的参数冻结,即保持不变。然后,在冻结的预训练模型之上,添加一些新的层,这些层将用于适应新的任务。例如,可以添加一个分类器层,用于将文本分类为正面或负面情感。在这个过程中,只有新添加的层的参数将被训练,而预训练模型的的其他参数将被保持不变。这样,只需要训练一小部分参数,就可以快速微调模型,同时保持了预训练模型的性能。因此,LoRA方法可以在不增加模型大小和计算成本的情况下,实现更好的模型性能和更快的训练速度。
复制
剪切
删除
正文
AI
智能创作
通用
图片
表格
附件
代码块
公式
超链接
提及
阅读统计
高亮信息
流程图
思维导图
文本格式
正文
一级标题
二级标题
三级标题
四级标题
五级标题
六级标题
无序列表
有序列表
待办列表
引用
分割线
数据表
表格视图
相册视图
看板视图
甘特视图
日历视图
架构视图
第三方应用
DuChatBeta
百度地图
CodePen
Figma
今年GPT把AI带火了,每天都有新的进展、劲爆的消息,作为一个从未接触过AI开发的普通同学来说,看消息都看的费劲。所以想着把这些黑话都沉淀一下。虽然不全,甚至还有部分概念/信息理解不一定正确。不过在自学之余,捎带手整理出来,希望对和我一样的零经验选手来说有点帮助。

PT、SFT

在大模型领域,PT和SFT分别代表预训练(Pre-training)和监督微调(Supervised Fine-tuning)。这两个概念通常用于构建和优化深度学习模型,特别是自然语言处理(NLP)领域的模型。
  • 预训练(Pre-training,简称PT):预训练是一种无监督学习方法,模型通过大量无标签数据进行训练,以捕捉数据的底层结构和模式。在自然语言处理领域,预训练模型通常学习词汇、语法和句子结构等基本特征。预训练的目的是让模型学会一定程度的通用知识,为后续的微调阶段打下基础。
  • 监督微调(Supervised fine-tuning,简称SFT):微调是一种有监督学习方法,通过在有标签数据上对预训练模型进行进一步训练,以适应特定的任务。这个过程使得模型能够利用预训练阶段学到的通用知识,结合新数据的标签信息,使模型在特定任务上表现更好。

自监督学习

大型语言模型本质上就是神经网络,也就是一种机器学习的方法。机器学习中的监督学习需要人类帮助标注数据。然而遗憾的是,ChatGPT 底层的大型语言模型参数如此的多,如果使用监督学习,必然需要大量的人类标记数据,这几乎是不可能的。自监督学习主要是利用辅助任务(pretext)从大规模的无监督数据中挖掘自身的监督信息,通过这种构造的监督信息训练模型,从而学习到对下游任务有价值的表征。

自回归模型

GPT 是如何在人类的文本数据上实现自监督学习?用一句话就可以讲明白:用文本的前文来预测后文

Token

GPT 不是适用于某一门语言的大型语言模型,它适用于几乎所有流行的自然语言。所以 GPT 的 token 需要兼容几乎人类的所有自然语言,那意味着 GPT 有一个非常全的 token 词汇表,它能表达出所有人类的自然语言。如何实现这个目的呢?答案是通过 unicode 编码。实际上 GPT 是使用一种称为 BPE (Byte Pair Encoding)的算法,在上面的基础上进一步生成更大的词汇表。它的基本思想如下,将上述的基础 token (256种可能)做组合,然后统计文本数据中这些组合出现的频率,将频率最大的那些保留下来,形成新的 token 词汇表。因此,通过此方法得到的 token 和文字的映射不一定是一对一的关系。 GPT 实际是将我们输入的文字转换成 token,然后通过 GPT 模型预测 token,再将 token 转换成文字,最后再输出给我们。

上下文学习

对于大型语言模型来说,即需要大量的数据标记成本,也需要算力成本和时间成本。然而,不同场景下任务的需求是不一样的,不可能根据每个任务都去微调模型。能否不进行微调就让模型学习完成不同的任务呢?答案是可以的,这个神奇的技术称为 上下文学习 (In Context Learning)。它的实现非常简单,只需要给到模型一些引导,将一些事先设定的文本输入到大型语言模型中,就像手把手教人学会某项技能一样,大型语言模型就能神奇的学习到如何处理后续的新任务。遗憾的是,为什么大型语言模型具有上下文学习的能力仍然是一个迷,业内把这个能力称为“涌现”

思维链

“思维链”是指在思考问题或探索主题时,一个思想引发另一个思想,形成一系列相互关联的思维环节。这种思维过程可以是线性或非线性的,通过连接和扩展思想,帮助我们更全面地理解问题,促进创新性思考,思维链是认知过程中的重要组成部分。

Transformer

是一种基于自注意力机制的深度学习模型架构,用于处理序列数据,特别在自然语言处理领域取得重大突破。它由编码器和解码器组成,通过并行处理和全局关联建立,能够更好地捕捉长期依赖关系,实现高效的序列到序列转换。

LoRA

假设有一个预训练好的语言模型,包含了大量的预训练好的参数。现在要使用这个模型来解决一个特定的下游任务,例如情感分析。为了适应这个特定的任务,需要微调模型。

使用LoRA方法,首先将预训练模型的参数冻结,即保持不变。然后,在冻结的预训练模型之上,添加一些新的层,这些层将用于适应新的任务。例如,可以添加一个分类器层,用于将文本分类为正面或负面情感。在这个过程中,只有新添加的层的参数将被训练,而预训练模型的的其他参数将被保持不变。这样,只需要训练一小部分参数,就可以快速微调模型,同时保持了预训练模型的性能。因此,LoRA方法可以在不增加模型大小和计算成本的情况下,实现更好的模型性能和更快的训练速度。
评论
用户头像
0 / 0
100%
0 / 0
100%